Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
1.
J Gen Appl Microbiol ; 69(4): 185-195, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36935115

RESUMO

Although n-butanol (BuOH) is an ideal fuel because of its superior physical properties, it has toxicity to microbes. Previously, a Synechococcus elongatus PCC 7942 derivative strain that produces BuOH from CO2 was developed by introducing six heterologous genes (BUOH-SE strain). To identify the bottleneck in BuOH production, the effects of BuOH production and its toxicity on central metabolism and the photosystem were investigated. Parental (WT) and BUOH-SE strains were cultured under autotrophic conditions. Consistent with the results of a previous study, BuOH production was observed only in the BUOH-SE strain. Isotopically non-stationary 13C-metabolic flux analysis revealed that the CO2 fixation rate was much larger than the BuOH production rate in the BUOH-SE strain (1.70 vs 0.03 mmol gDCW-1 h-1), implying that the carbon flow for BuOH biosynthesis was less affected by the entire flux distribution. No large difference was observed in the flux of metabolism between the WT and BUOH-SE strains. Contrastingly, in the photosystem, the chlorophyll content and maximum O2 evolution rate per dry cell weight of the BUOH-SE strain were decreased to 81% and 43% of the WT strain, respectively. Target proteome analysis revealed that the amounts of some proteins related to antennae (ApcA, ApcD, ApcE, and CpcC), photosystem II (PsbB, PsbU, and Psb28-2), and cytochrome b6f complex (PetB and PetC) in photosystems decreased in the BUOH-SE strain. The activation of photosynthesis would be a novel approach for further enhancing BuOH production in S. elongatus PCC 7942.


Assuntos
1-Butanol , Proteoma , Proteoma/genética , Complexo Citocromos b6f , Dióxido de Carbono , Fotossíntese , Butanóis
3.
Biochemistry (Mosc) ; 88(10): 1438-1454, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105016

RESUMO

This work represents an overview of electron transport regulation in chloroplasts as considered in the context of structure-function organization of photosynthetic apparatus in plants. Main focus of the article is on bifurcated oxidation of plastoquinol by the cytochrome b6f complex, which represents the rate-limiting step of electron transfer between photosystems II and I. Electron transport along the chains of non-cyclic, cyclic, and pseudocyclic electron flow, their relationships to generation of the trans-thylakoid difference in electrochemical potentials of protons in chloroplasts, and pH-dependent mechanisms of regulation of the cytochrome b6f complex are considered. Redox reactions with participation of molecular oxygen and ascorbate, alternative mediators of electron transport in chloroplasts, have also been discussed.


Assuntos
Complexo Citocromos b6f , Citocromos b , Transporte de Elétrons , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Citocromos b/metabolismo , Elétrons , Cloroplastos/metabolismo , Fotossíntese , Oxirredução
4.
Genes (Basel) ; 14(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136973

RESUMO

A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.


Assuntos
Citocromos b , Synechocystis , Transporte de Elétrons/genética , Synechocystis/genética , Synechocystis/metabolismo , Oxirredução , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plastoquinona/química
5.
Plant Physiol ; 193(4): 2398-2412, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37671674

RESUMO

Genetically improving photosynthesis is a key strategy to boosting crop production to meet the rising demand for food and fuel by a rapidly growing global population in a warming climate. Many components of the photosynthetic apparatus have been targeted for genetic modification for improving photosynthesis. Successful translation of these modifications into increased plant productivity in fluctuating environments will depend on whether the electron transport chain (ETC) can support the increased electron transport rate without risking overreduction and photodamage. At present atmospheric conditions, the ETC appears suboptimal and will likely need to be modified to support proposed photosynthetic improvements and to maintain energy balance. Here, I derive photochemical equations to quantify the transport capacity and the corresponding reduction level based on the kinetics of redox reactions along the ETC. Using these theoretical equations and measurements from diverse C3/C4 species across environments, I identify several strategies that can simultaneously increase the transport capacity and decrease the reduction level of the ETC. These strategies include increasing the abundances of reaction centers, cytochrome b6f complexes, and mobile electron carriers, improving their redox kinetics, and decreasing the fraction of secondary quinone-nonreducing photosystem II reaction centers. I also shed light on several previously unexplained experimental findings regarding the physiological impacts of the abundances of the cytochrome b6f complex and plastoquinone. The model developed, and the insights generated from it facilitate the development of sustainable photosynthetic systems for greater crop yields.


Assuntos
Complexo Citocromos b6f , Fotossíntese , Transporte de Elétrons/fisiologia , Fotossíntese/fisiologia , Oxirredução , Complexo Citocromos b6f/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
6.
Plant Signal Behav ; 18(1): 2258321, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37707988

RESUMO

The chloroplasts in terrestrial plants play a functional role as a major sensor for perceiving physiological changes under normal and stressful conditions. Despite the fact that the plant chloroplast genome encodes around 120 genes, which are mainly essential for photosynthesis and chloroplast biogenesis, the functional roles of the genes remain to be determined in plant's response to environmental stresses. Photosynthetic electron transfer D (PETD) is a key component of the chloroplast cytochrome b6f complex. Chloroplast ndhA (NADH dehydrogenase A) and ndhB (NADH dehydrogenase B) interact with photosystem I (PSI), forming NDH-PSI supercomplex. Notably, artificial targeting of chloroplasts-encoded proteins, PETD, NDHA, or NDHB, was successfully relocated from cytosols into chloroplasts. The result suggests that artificial targeting of proteins to chloroplasts is potentially open to the possibility of chloroplast biotechnology in engineering of plant tolerance against biotic and abiotic stresses.


Assuntos
Proteínas de Cloroplastos , Complexo Citocromos b6f , Citosol , Proteínas de Cloroplastos/genética , NADH Desidrogenase , Cloroplastos
7.
Plant J ; 116(3): 706-716, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493543

RESUMO

Cyclic electron transport (CET) around photosystem I (PSI) is crucial for photosynthesis to perform photoprotection and sustain the balance of ATP and NADPH. However, the critical component of CET, cyt b6 f complex (cyt b6 f), functions in CET has yet to be understood entirely. In this study, we found that NdhS, a subunit of NADPH dehydrogenase-like (NDH) complex, interacted with cyt b6 f to form a complex in Arabidopsis. This interaction depended on the N-terminal extension of NdhS, which was conserved in eukaryotic plants but defective in prokaryotic algae. The migration of NdhS was much more in cyt b6 f than in PSI-NDH super-complex. Based on these results, we suggested that NdhS and NADP+ oxidoreductase provide a docking domain for the mobile electron carrier ferredoxin to transfer electrons to the plastoquinone pool via cyt b6 f in eukaryotic photosynthesis.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo Citocromos b6f/metabolismo , Citocromos b , Transporte de Elétrons , Ferredoxinas/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo
8.
Plant Physiol ; 192(4): 2803-2821, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37144829

RESUMO

Plants have evolved multiple mechanisms to cope with diverse types of light stress, particularly the regulation of the electron transport chain (ETC). Under high light (HL) conditions, the balance of electron flux in the ETC is disturbed, which leads to the overaccumulation of reactive oxygen species (ROS) and results in photodamage and photoinhibition. The cytochrome (Cyt) b6/f complex, which coordinates electron transfer between photosystems I and II (PSI and PSII), plays an essential role in regulating the ETC and initiating photoprotection. However, how the Cyt b6/f complex is maintained under HL conditions remains unclear. Here, we report that the activity of the Cyt b6/f complex is sustained by thylakoid-localized cyclophilin 37 (CYP37) in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, cyp37 mutants displayed an imbalance in electron transport from Cyt b6/f to PSI under HL stress, which led to increased ROS accumulation, decreased anthocyanin biosynthesis, and increased chlorophyll degradation. Surprisingly, CYP37's role in regulating ETC balance was independent of photosynthesis control, which was indicated by a higher Y (ND), an indicator of P700 oxidation in PSI. Furthermore, the interaction between CYP37 and photosynthetic electron transfer A (PetA), a subunit of the Cyt b6/f complex, suggests that the central function of CYP37 is to maintain Cyt b6/f complex activity rather than to serve as an assembly factor. Our study provides insights into how plants balance electron flow between PSII and PSI via Cyt b6/f complex under HL.


Assuntos
Arabidopsis , Transporte de Elétrons/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citocromos b6/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plantas/metabolismo
9.
Biomolecules ; 13(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36979472

RESUMO

The unicellular green alga, Chlamydomonas reinhardtii, has been widely used as a model system to study photosynthesis. Its possibility to generate and analyze specific mutants has made it an excellent tool for mechanistic and biogenesis studies. Using negative selection of ultraviolet (UV) irradiation-mutated cells, we isolated a mutant (TSP9) with a single amino acid mutation in the Rieske protein of the cytochrome b6f complex. The W143R mutation in the petC gene resulted in total loss of cytochrome b6f complex function at the non-permissive temperature of 37 °C and recovery at the permissive temperature of 25 °C. We then isolated photosystem I (PSI) and photosystem II (PSII) supercomplexes from cells grown at the non-permissive temperature and determined the PSI structure with high-resolution cryogenic electron microscopy. There were several structural alterations compared with the structures obtained from wild-type cells. Our structural data suggest that the mutant responded by excluding the Lhca2, Lhca9, PsaL, and PsaH subunits. This structural alteration prevents state two transition, where LHCII migrates from PSII to bind to the PSI complex. We propose this as a possible response mechanism triggered by the TSP9 phenotype at the non-permissive temperature.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Temperatura , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
10.
Plant Physiol ; 192(2): 789-804, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36960590

RESUMO

Photosynthetic organisms frequently experience abiotic stress that restricts their growth and development. Under such circumstances, most absorbed solar energy cannot be used for CO2 fixation and can cause the photoproduction of reactive oxygen species (ROS) that can damage the photosynthetic reaction centers of PSI and PSII, resulting in a decline in primary productivity. This work describes a biological "switch" in the green alga Chlamydomonas reinhardtii that reversibly restricts photosynthetic electron transport (PET) at the cytochrome b6f (Cyt b6f) complex when the capacity for accepting electrons downstream of PSI is severely limited. We specifically show this restriction in STARCHLESS6 (sta6) mutant cells, which cannot synthesize starch when they are limited for nitrogen (growth inhibition) and subjected to a dark-to-light transition. This restriction represents a form of photosynthetic control that causes diminished electron flow to PSI and thereby prevents PSI photodamage but does not appear to rely on a ΔpH. Furthermore, when electron flow is restricted, the plastid alternative oxidase (PTOX) becomes active, functioning as an electron valve that dissipates some excitation energy absorbed by PSII and allows the formation of a proton motive force (PMF) that would drive some ATP production (potentially sustaining PSII repair and nonphotochemical quenching [NPQ]). The restriction at the Cyt b6f complex can be gradually relieved with continued illumination. This study provides insights into how PET responds to a marked reduction in availability of downstream electron acceptors and the protective mechanisms involved.


Assuntos
Complexo Citocromos b6f , Elétrons , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Fotossíntese/fisiologia , Oxirredução , Oxidantes , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Luz
11.
Plant Cell Environ ; 46(5): 1540-1561, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36760139

RESUMO

A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun-induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6 f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3 /C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/química , Fotossíntese , Oxirredução , Plastoquinona , Complexo Citocromos b6f/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
12.
Sci Adv ; 9(2): eadd9688, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638176

RESUMO

Plants use solar energy to power cellular metabolism. The oxidation of plastoquinol and reduction of plastocyanin by cytochrome b6f (Cyt b6f) is known as one of the key steps of photosynthesis, but the catalytic mechanism in the plastoquinone oxidation site (Qp) remains elusive. Here, we describe two high-resolution cryo-EM structures of the spinach Cyt b6f homodimer with endogenous plastoquinones and in complex with plastocyanin. Three plastoquinones are visible and line up one after another head to tail near Qp in both monomers, indicating the existence of a channel in each monomer. Therefore, quinones appear to flow through Cyt b6f in one direction, transiently exposing the redox-active ring of quinone during catalysis. Our work proposes an unprecedented one-way traffic model that explains efficient quinol oxidation during photosynthesis and respiration.


Assuntos
Citocromos b , Plastocianina , Citocromos b/metabolismo , Plastocianina/metabolismo , Microscopia Crioeletrônica , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Oxirredução , Fotossíntese , Plantas/metabolismo , Quinonas , Transporte de Elétrons
13.
Biochim Biophys Acta Bioenerg ; 1864(2): 148945, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442511

RESUMO

Knowledge about the exact abundance and ratio of photosynthetic protein complexes in thylakoid membranes is central to understanding structure-function relationships in energy conversion. Recent modeling approaches for studying light harvesting and electron transport reactions rely on quantitative information on the constituent complexes in thylakoid membranes. Over the last decades several quantitative methods have been established and refined, enabling precise stoichiometric information on the five main energy-converting building blocks in the thylakoid membrane: Light-harvesting complex II (LHCII), Photosystem II (PSII), Photosystem I (PSI), cytochrome b6f complex (cyt b6f complex), and ATPase. This paper summarizes a few quantitative spectroscopic and biochemical methods that are currently available for quantification of plant thylakoid protein complexes. Two new methods are presented for quantification of LHCII and the cyt b6f complex, which agree well with established methods. In addition, recent improvements in mass spectrometry (MS) allow deeper compositional information on thylakoid membranes. The comparison between mass spectrometric and more classical protein quantification methods shows similar quantities of complexes, confirming the potential of thylakoid protein complex quantification by MS. The quantitative information on PSII, PSI, and LHCII reveal that about one third of LHCII must be associated with PSI for a balanced light energy absorption by the two photosystems.


Assuntos
Complexo Citocromos b6f , Tilacoides , Tilacoides/metabolismo , Complexo Citocromos b6f/metabolismo , Citocromos b/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo
14.
Photosynth Res ; 155(3): 219-245, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36542271

RESUMO

Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.


Assuntos
Synechocystis , Synechocystis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo Citocromos b6f/metabolismo , Fotossíntese , Clorofila/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Transporte de Elétrons
15.
Plant Commun ; 4(1): 100509, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560880

RESUMO

The cytochrome b6f (Cyt b6f) complex is a multisubunit protein complex in chloroplast thylakoid membranes required for photosynthetic electron transport. Here we report the isolation and characterization of the new tiny albino 1 (nta1) mutant in Arabidopsis, which has severe defects in Cyt b6f accumulation and chloroplast development. Gene cloning revealed that the nta1 phenotype was caused by disruption of a single nuclear gene, NTA1, which encodes an integral thylakoid membrane protein conserved across green algae and plants. Overexpression of NTA1 completely rescued the nta1 phenotype, and knockout of NTA1 in wild-type plants recapitulated the mutant phenotype. Loss of NTA1 function severely impaired the accumulation of multiprotein complexes related to photosynthesis in thylakoid membranes, particularly the components of Cyt b6f. NTA1 was shown to directly interact with four subunits (Cyt b6/PetB, PetD, PetG, and PetN) of Cyt b6f through the DUF1279 domain and C-terminal sequence to mediate their assembly. Taken together, our results identify NTA1 as a new and key regulator of chloroplast development that plays essential roles in assembly of the Cyt b6f complex by interacting with multiple Cyt b6f subunits.


Assuntos
Arabidopsis , Complexo Citocromos b6f , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Citocromos b/metabolismo , Proteínas de Membrana/metabolismo , Plantas/metabolismo , Tilacoides/metabolismo , Proteínas de Arabidopsis/metabolismo
16.
Plant Physiol ; 191(3): 1803-1817, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36516417

RESUMO

Linear photosynthetic electron flow (LEF) produces NADPH and generates a proton electrochemical potential gradient across the thylakoid membrane to synthesize ATP, both of which are required for CO2 fixation. As cellular demand for ATP and NADPH varies, cyclic electron flow (CEF) between Photosystem I and the cytochrome b6f complex (b6f) produces extra ATP. b6f regulates LEF and CEF via photosynthetic control, which is a pH-dependent b6f slowdown of plastoquinol oxidation at the lumenal site. This protection mechanism is triggered at more alkaline lumen pH in the pgr1 (proton gradient regulation 1) mutant of the vascular plant Arabidopsis (Arabidopsis thaliana), which contains a Pro194Leu substitution in the b6f Rieske Iron-sulfur protein Photosynthetic Electron Transfer C (PETC) subunit. In this work, we introduced the equivalent pgr1 mutation in the green alga Chlamydomonas reinhardtii to generate PETC-P171L. Consistent with the pgr1 phenotype, PETC-P171L displayed impaired NPQ induction along with slower photoautotrophic growth under high light conditions. Our data provide evidence that the ΔpH component in PETC-P171L depends on oxygen availability. Only under low oxygen conditions was the ΔpH component sufficient to trigger a phenotype in algal PETC-P171L where the mutant b6f was more restricted to oxidize the plastoquinol pool and showed diminished electron flow through the b6f complex. These results demonstrate that photosynthetic control of different stringency are established in C. reinhardtii depending on the cellular metabolism, and the lumen pH-sensitive PETC-P171L was generated to read out various associated effects.


Assuntos
Arabidopsis , Complexo Citocromos b6f , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Prótons , Elétrons , NADP/metabolismo , Transporte de Elétrons/fisiologia , Fotossíntese/genética , Oxirredução , Arabidopsis/genética , Arabidopsis/metabolismo , Trifosfato de Adenosina/metabolismo , Oxigênio/metabolismo
17.
Physiol Plant ; 174(6): e13803, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36259085

RESUMO

Photosynthesis is fundamental for plant growth and yield. The cytochrome b6 f complex catalyses a rate-limiting step in thylakoid electron transport and therefore represents an important point of regulation of photosynthesis. Here we show that overexpression of a single core subunit of cytochrome b6 f, the Rieske FeS protein, led to up to a 40% increase in the abundance of the complex in Nicotiana tabacum (tobacco) and was accompanied by an enhanced in vitro cytochrome f activity, indicating a full functionality of the complex. Analysis of transgenic plants overexpressing Rieske FeS by the light-induced fluorescence transients technique revealed a more oxidised primary quinone acceptor of photosystem II (QA ) and plastoquinone pool and faster electron transport from the plastoquinone pool to photosystem I upon changes in irradiance, compared to control plants. A faster establishment of qE , the energy-dependent component of nonphotochemical quenching, in transgenic plants suggests a more rapid buildup of the transmembrane proton gradient, also supporting the increased in vivo cytochrome b6 f activity. However, there was no consistent increase in steady-state rates of electron transport or CO2 assimilation in plants overexpressing Rieske FeS grown in either laboratory conditions or field trials, suggesting that the in vivo activity of the complex was only transiently increased upon changes in irradiance. Our results show that overexpression of Rieske FeS in tobacco enhances the abundance of functional cytochrome b6 f and may have the potential to increase plant productivity if combined with other traits.


Assuntos
Citocromos b , /genética , Citocromos b/metabolismo , Plastoquinona , Fotossíntese/fisiologia , Transporte de Elétrons/fisiologia , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plantas Geneticamente Modificadas/metabolismo
18.
Biochemistry (Mosc) ; 87(10): 1084-1097, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273877

RESUMO

This work is devoted to theoretical study of functioning of the cytochrome (Cyt) b6f complex (plastoquinol:plastocyanin oxidoreductase) of the electron transport chain (ETC) in oxygenic photosynthesis. A composition of the chloroplast ETC and molecular mechanisms of functioning of the Cyt b6f complex, which stands between photosystems II and I (PSII and PSI), are briefly reviewed. The Cyt b6f complex oxidizes plastoquinol (PQH2) molecules formed in PSII, and reduces plastocyanin, which serves as an electron donor to PSI. PQH2 oxidation is the rate-limiting step in the chain of electron transfer processes between PSII and PSI. Using the density functional theory (DFT) method, we have analyzed the two-electron (bifurcated) oxidation of PQH2 in the catalytic center Qo of the Cyt b6f complex. Results of DFT calculations are consistent with the fact that the first step of PQH2 oxidation, electron transfer to the Fe2S2 cluster of the iron-sulfur protein (ISP), is an endergonic (energy-accepting) process (ΔE ≈ 15 kJ·mol-1) that can limit turnover of the Cyt b6f complex. The second stage of bifurcated oxidation of PQH2 - electron transfer from semiquinone (PQH•, formed after the first step of PQH2 oxidation) to heme b6L - is the exergonic (energy-donating) process (ΔE < 0). DFT modeling of this stage revealed that semiquinone oxidation should accelerate after the PQH• radical shift towards the heme b6L (an electron acceptor) and the carboxy group of Glu78 (a proton acceptor). The data obtained are discussed within the framework of the Mitchell Q-cycle model describing PQH2 oxidation at the Qo site of the Cyt b6f complex.


Assuntos
Proteínas Ferro-Enxofre , Plastocianina , Transporte de Elétrons , Plastocianina/metabolismo , Prótons , Citocromos b/metabolismo , Complexo Citocromos b6f/metabolismo , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Heme/metabolismo
19.
ACS Nano ; 16(9): 15155-15164, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36067071

RESUMO

Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.


Assuntos
Complexo de Proteína do Fotossistema I , Plastocianina , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Elétrons , Luz , Oxirredução , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Análise Espectral , Água/metabolismo
20.
Photosynth Res ; 154(1): 21-40, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35980499

RESUMO

The acclimation of higher plants to different light intensities is associated with a reorganization of the photosynthetic apparatus. These modifications, namely, changes in the amount of peripheral antenna (LHCII) of photosystem (PS) II and changes in PSII/PSI stoichiometry, typically lead to an altered chlorophyll (Chl) a/b ratio. However, our previous studies show that in spruce, this ratio is not affected by changes in growth light intensity. The evolutionary loss of PSII antenna proteins LHCB3 and LHCB6 in the Pinaceae family is another indication that the light acclimation strategy in spruce could be different. Here we show that, unlike Arabidopsis, spruce does not modify its PSII/PSI ratio and PSII antenna size to maximize its photosynthetic performance during light acclimation. Its large PSII antenna consists of many weakly bound LHCIIs, which form effective quenching centers, even at relatively low light. This, together with sensitive photosynthetic control on the level of cytochrome b6f complex (protecting PSI), is the crucial photoprotective mechanism in spruce. High-light acclimation of spruce involves the disruption of PSII macro-organization, reduction of the amount of both PSII and PSI core complexes, synthesis of stress proteins that bind released Chls, and formation of "locked-in" quenching centers from uncoupled LHCIIs. Such response has been previously observed in the evergreen angiosperm Monstera deliciosa exposed to high light. We suggest that, in contrast to annuals, shade-tolerant evergreen land plants have their own strategy to cope with light intensity changes and the hallmark of this strategy is a stable Chl a/b ratio.


Assuntos
Arabidopsis , Picea , Aclimatação , Arabidopsis/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Complexo Citocromos b6f/metabolismo , Citocromos b/metabolismo , Proteínas de Choque Térmico/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Picea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...